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1 Bounds on Rademacher Complexity of Function Classes

1.1 Bounding E[||P,, — P||] in terms of Rademacher complexity

Last time, we were studying empirical processes defined by X; Kpe P(X) and a function

class F C{f: X - R:E[|f(X)|] < co}. We want to bound the maximum of the empirical

process,
Zf X)]|-

We introduced the notion of Rademacher complex1ty for function classes: Given F and

{i}ie(n), we let

I, Pl = sup

R(F(z1:n)/n) = Ec |sup fozf
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Then, given F and P,
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What is the relationship of Rademacher complexity and ||P,, — P||#? Define

Zezf

Here is an upgraded version of what we showed last time.
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1Snll7 = sup

Proposition 1.1. For every convex, nondecreasing function ® : R — R,
1 (a)
Exe[®(5(Snlz)] < Ex[®([|Pr —Pll5)]

(b)
< Exo[®(2[ISn]l7)],

where F = {f — E[f]: f € F}.



Remark 1.1. Making ®(t) = ¢ retrieves the bound on [P, — P|| in terms of Rademacher
complexity. We can also take the upper bound to also be F because E[|P, — P|| ] =

E[[|Pr — ]P)Hf'
z‘)])D

1
® (?EE’: p ;(f(Xz) —- f(v3))

Since f(X;) — f(¥i) has a symmetric distribution,

Proof. For (b),

Ex[®(|[Pn —P||#)] = Ex [ (SUP
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Using Jensen’s inequality,
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Using Jensen’s inequality again,
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For (a),
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Using Jensen’s inequality,
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Since f(X;) — f(Y;) has a symmetric distribution,
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Suppose that for all f € F, ||f|lcc < b. Then ||P, — P|| 7 is (2b/n,...,2b/n)-bounded
difference. The bounded difference inequality then gives that |P,, — P||£ is sG(b/y/n). In
other words,

log(2
||Pr, — Pl — E[||P, — P||£| < b l0g(2/0)  Lith probability 1 — 4.
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This upper bound is typically smaller than F,,(F). This tells us that

< 2R, (F) + by 0822

n

> LR,(F) — by /183
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Note that

H]P)n - PHF = ”Pn - PH? ,S 2RN(}_)-

1.2 Aside: the maximal inequality

How do we upper bound the Rademacher complexity? Let’s take a higher level picture and
try to bound E[supy_g Xp]. In many cases, Xy is sub-Gaussian for each fixed 6.

The simplest case is when O is finite. In this case, we have a maximal inequality: If
for all 0 € ©, Xy € sG(0), then

E [maxXg] < o4/2log|O|.

0cO

However, typically, this set © is infinite, so the maximal inequality cannot handle this case.

In the next lecture, we will discuss the metric entropy method, in which we approximate
© by O, where |0,| < co and

—0
sup Xg —— sup Xp.
USCH 0cO



We will make this statement quantitative and precise. We will also introduce a different
reduction, based on the concept of VC dimension.

1.3 Bounding Rademacher complexity using the maximal inequality
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Use the special structure

Rn(F) =Ex, |sup

fer

1 n
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If, for example, F C {f : X — {£1}}, then

Sometimes |F| = oo, but |F(X1.,)| < oo.
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Bound the expectation by the supremum.
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Example 1.1. Suppose F = {l x< :t € R}, so
F(Xtn) ={(Txy<tps Lixo<tys -0 Lyx,<ey) 1t € RE
Then if X7 < Xo < -+ < X,
f(Xlin) = {(Ovoa""0)7(1a0a"'70)>(1a1a0a"'30)7"'7(1313--'71)}7

S0
sup |F(Xim)|=n+1.
1:n
Let’s return to bounding
1
E. sup |—(g,v)| | Xim| -
VG]'—(XIZTL) n

We have that L (g,v) = 1 3% | 1 is sG(0y,), where
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VE]‘—(Xl;n) n feF n




This tells us that the maximum of |F(Xi.,)| is the number of mean 0 sG(oy,,) random
variables. So the maximum inequality tells us that

E. sup
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Example 1.2. Let 7 = {l;x<; : t € R} be the function class in the Glivenko-Cantelli
theorem. Then

sup |F(Xi0)|=n+1,
Xl:n

no12
sup Dr(X1.,) = sup i l®

Xl:n fEF n
So we get
21og(2 1
R, (F) < 22 D)
n
which bounds

2log(2(n + 1 log(2
P, — P|lx < 2\/ og2(n+1)) \/ 08(2/0)  ith probability 1— 9.
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Remark 1.2. The above example gives a proof of the Glivenko-Cantelli theorem.

Remark 1.3. This logn factor is not sharp. Using other arguments, we will be able
to show that the bound is actually of order y/1/n. The issue here is that the maximal
inequality is only sharp when the terms are independent. If X; are sG(1), then

x O(v/1ogn) if the X; are independent
sup X; =
P T X =0() #Xi=Xo=- =X,

Look at the bound

2108217 (X1))
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A= Dr(Xin) \/

typically O(1)

Vv
want to vanish as n — oo

Let’s restricut our attention to F C {f : X — {£1}}. Here are two frequent behaviors of
F(Xin):



(a) If |F(X1:n)| S O(nY), then A = O(\/”lo%). This will go to 0 as n — oo, so this
situation is good.

(b) If | F(X1m)| S O(V™), then A = O(\/%) = O(y/logv). This will not go to 0 as

n — 00, so this situation is not good.

We want to be able to discriminate between these two cases. Since F(Xi.,) C {£1}",
|F(X1:m)| < 2" But when can we give a sharper upper bound?

Definition 1.1. F has polynomial discrimination of order v > 1 if for all n and X7.,,
|F(X1n)| S (n+1)"

Lemma 1.1. Suppose F has PD(v). Then

Rn(F) <4 <sup Dr(Xi.4)

) vlog(n+1)
Xin

n

Example 1.3. The function class {1{x<; : t € R} has PD(1), which implies the Glivenko-
Cantelli theorem.

What kind of function classes have polynomial discrimination? Let ¢ : X — R,

Example 1.4. If F = {{(¢)(z),0) +b: 0 € R b € R}, then |F(X1.,)| = co. So this does

not have polynomial discrimination.

Example 1.5. If F = {1{(y(x) 6>t : 0 € R%, b € R}, then F has PD(d + 1).
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