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1 Bounds on Rademacher Complexity of Function Classes

1.1 Bounding E[‖Pn − P‖]F in terms of Rademacher complexity

Last time, we were studying empirical processes defined by Xi
iid∼ P ∈ P(X ) and a function

class F ⊆ {f : X → R : E[|f(X)|] <∞}. We want to bound the maximum of the empirical
process,

‖Pn − P‖F := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ .
We introduced the notion of Rademacher complexity for function classes: Given F and
{xi}i∈[n], we let

R(F(x1:n)/n) = Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]
.

Then, given F and P,

Rn(F) = Eε,X

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]
.

What is the relationship of Rademacher complexity and ‖Pn − P‖F? Define

‖Sn‖F = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣ .
Here is an upgraded version of what we showed last time.

Proposition 1.1. For every convex, nondecreasing function Φ : R→ R,

EX,ε[Φ(1
2‖Sn‖F )]

(a)

≤ EX [Φ(‖Pn − P‖F )]

(b)

≤ EX,ε[Φ(2‖Sn‖F )],

where F = {f − E[f ] : f ∈ F}.
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Remark 1.1. Making Φ(t) = t retrieves the bound on ‖Pn−P‖F in terms of Rademacher
complexity. We can also take the upper bound to also be F because E[‖Pn − P‖F ] =
E[‖Pn − P‖F .

Proof. For (b),

EX [Φ(‖Pn − P‖F )] = EX

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− E[f(Yi)])

∣∣∣∣∣
)]

Using Jensen’s inequality,

≤ EX,Y

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
)]

Since f(Xi)− f(Yi) has a symmetric distribution,

= EX,Y,ε

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi(f(Xi)− f(Yi))

∣∣∣∣∣
)]

≤ EX,Y,ε

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Yi)

∣∣∣∣∣
)]

Using Jensen’s inequality again,

≤ 1

2
EX,ε

[
Φ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
)]

+
1

2
EY,ε

[
Φ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Yi)

∣∣∣∣∣
)]

= EX,ε[Φ(2‖Sn‖F )].

For (a),

EX,ε[Φ(1
2‖Sn‖F )] = EX,ε

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi(f(Xi)− E[f(Yi)])

∣∣∣∣∣
)]

Using Jensen’s inequality,

≤ EX,Y,ε

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi(f(Xi)− f(Yi))

∣∣∣∣∣
)]

Since f(Xi)− f(Yi) has a symmetric distribution,

= EX,Y

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
)]

= EX,Y

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− E[f(Xi)])− (f(Yi)− E[f(Yi)])

∣∣∣∣∣
)]
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≤ EX,Y

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(Xi)])

∣∣∣∣∣
+

1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Yi)− E[f(Yi)])

∣∣∣∣∣
)]

Using Jensen’s inequality again,

=
1

2
EX

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(Xi)])

∣∣∣∣∣
)]

+
1

2
EY

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Yi)− E[f(Yi)])

∣∣∣∣∣
)]

= EX [Φ(‖Pn − P‖F ].

Suppose that for all f ∈ F , ‖f‖∞ ≤ b. Then ‖Pn − P‖F is (2b/n, . . . , 2b/n)-bounded
difference. The bounded difference inequality then gives that ‖Pn − P‖F is sG(b/

√
n). In

other words,

|‖Pn − P‖F − E[‖Pn − P‖F | ≤ b
√

log(2/δ)

n
with probability 1− δ.

This upper bound is typically smaller than Fn(F). This tells us that

‖Pn − P‖F

≤ 2Rn(F) + b

√
log(2/δ
n

≥ 1
2Rn(F)− b

√
log(2/δ
n .

Note that
‖Pn − P‖F = ‖Pn − P‖F . 2Rn(F).

1.2 Aside: the maximal inequality

How do we upper bound the Rademacher complexity? Let’s take a higher level picture and
try to bound E[supθ∈ΘXθ]. In many cases, Xθ is sub-Gaussian for each fixed θ.

The simplest case is when Θ is finite. In this case, we have a maximal inequality: If
for all θ ∈ Θ, Xθ ∈ sG(σ), then

E
[
max
θ∈Θ

Xθ

]
≤ σ

√
2 log |Θ|.

However, typically, this set Θ is infinite, so the maximal inequality cannot handle this case.
In the next lecture, we will discuss the metric entropy method, in which we approximate

Θ by Θε, where |Θε| <∞ and

sup
θ∈Θε

Xθ
ε→0−−−→ sup

θ∈Θ
Xθ.
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We will make this statement quantitative and precise. We will also introduce a different
reduction, based on the concept of VC dimension.

1.3 Bounding Rademacher complexity using the maximal inequality

Use the special structure

Rn(F) = EX,ε

[
sup
f∈F

∣∣∣∣∣12
n∑
i=1

εif(Xi)

∣∣∣∣∣
]

= EX

[
Eε

[
sup
f∈F

∣∣∣∣∣12
n∑
i=1

εif(Xi)

∣∣∣∣∣ | X1:n

]]

= EX

[
Eε

[
sup

ν∈F(X1:n)

∣∣∣∣ 1n〈ε, ν〉
∣∣∣∣ | X1:n

]]
Bound the expectation by the supremum.

≤ sup
X1:n

Eε

[
sup

ν∈F(X1:n)

∣∣∣∣ 1n〈ε, ν〉
∣∣∣∣ | X1:n

]
If, for example, F ⊆ {f : X → {±1}}, then

F(X1:n) = {(f(X1), . . . , f(Xn)) : f ∈ F} ⊆ {±1}n.

Sometimes |F| =∞, but |F(X1:n)| <∞.

Example 1.1. Suppose F = {1{X≤t} : t ∈ R}, so

F(X1:n) = {(1{X1≤t},1{X2≤t}, . . . ,1{Xn≤t}) : t ∈ R}.

Then if X1 < X2 < · · · < Xn,

F(X1:n) = {(0, 0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1)},

so
sup
X1:n

|F(X1:n)| = n+ 1.

Let’s return to bounding

Eε

[
sup

ν∈F(X1:n)

∣∣∣∣ 1n〈ε, ν〉
∣∣∣∣ | X1:n

]
.

We have that 1
n〈ε, ν〉 = 1

n

∑n
i=1 εiνi is sG(σn), where

σn = sup
ν∈F(X1:n)

1

n
‖ν‖2 = sup

f∈F

1

n

√√√√ n∑
i=1

f(Xi)2.
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This tells us that the maximum of |F(X1:n)| is the number of mean 0 sG(σn) random
variables. So the maximum inequality tells us that

Eε

[
sup

ν∈F(X1:n)

∣∣∣∣ 1n〈ε, ν〉
∣∣∣∣ | X1:n

]
≤ σn

√
2 log(2|F(X1:n)|)

≈ sup
f∈F

√∑n
i=1 f(Xi)2

n︸ ︷︷ ︸
DF (X1:n)

√
2 log(2|F(X1:n)|)

n

Example 1.2. Let F = {1{X≤t} : t ∈ R} be the function class in the Glivenko-Cantelli
theorem. Then

sup
X1:n

|F(X1:n)| = n+ 1,

sup
X1:n

DF (X1:n) = sup
f∈F

√∑n
i=1 12

n
= 1.

So we get

Rn(F) ≤
√

2 log(2(n+ 1))

n
,

which bounds

‖Pn − P‖F . 2

√
2 log(2(n+ 1))

n
+

√
log(2/δ)

n
with probability 1− δ.

Remark 1.2. The above example gives a proof of the Glivenko-Cantelli theorem.

Remark 1.3. This log n factor is not sharp. Using other arguments, we will be able
to show that the bound is actually of order

√
1/n. The issue here is that the maximal

inequality is only sharp when the terms are independent. If Xi are sG(1), then

sup
i∈[n]

Xi =

{
O(
√

log n) if the Xi are independent

X1 = O(1) if X1 = X2 = · · · = Xn.

Look at the bound

∆ = DF (X1:n)︸ ︷︷ ︸
typically O(1)

√
2 log(2|F(X1:n)|)

n︸ ︷︷ ︸
want to vanish as n→∞

.

Let’s restricut our attention to F ⊆ {f : X → {±1}}. Here are two frequent behaviors of
|F(X1:n)|:
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(a) If |F(X1:n)| . O(nν), then ∆ = O(
√

ν logn
n ). This will go to 0 as n → ∞, so this

situation is good.

(b) If |F(X1:n)| . O(νn), then ∆ = O(
√

n log ν
n ) = O(

√
log ν). This will not go to 0 as

n→∞, so this situation is not good.

We want to be able to discriminate between these two cases. Since F(X1:n) ⊆ {±1}n,
|F(X1:n)| ≤ 2n. But when can we give a sharper upper bound?

Definition 1.1. F has polynomial discrimination of order ν ≥ 1 if for all n and X1:n,

|F(X1:n)| . (n+ 1)ν .

Lemma 1.1. Suppose F has PD(ν). Then

Rn(F) ≤ 4

(
sup
X1:n

DF (X1:n)

)√
ν log(n+ 1)

n
.

Example 1.3. The function class {1{X≤t} : t ∈ R} has PD(1), which implies the Glivenko-
Cantelli theorem.

What kind of function classes have polynomial discrimination? Let ψ : X → Rd.

Example 1.4. If F = {〈ψ(x), θ〉 + b : θ ∈ Rd, b ∈ R}, then |F(X1:n)| = ∞. So this does
not have polynomial discrimination.

Example 1.5. If F = {1{〈ψ(x),θ〉≥b} : θ ∈ Rd, b ∈ R}, then F has PD(d+ 1).
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